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Abstract. We introduce a master action in non-commutative space, out of which we obtain the action
of the non-commutative Maxwell–Chern–Simons theory. Then, we look for the corresponding dual theory
at both first and second order in the non-commutative parameter. At the first order, the dual theory
happens to be, precisely, the action obtained from the usual commutative self-dual model by generalizing
the Chern–Simons term to its non-commutative version, including a cubic term. Since this resulting theory
is also equivalent to the non-commutative massive Thirring model in the large fermion mass limit, we
remove, as a byproduct, the obstacles arising in the generalization to non-commutative space, and to the
first non-trivial order in the non-commutative parameter, of the bosonization in three dimensions. Then,
performing calculations at the second order in the non-commutative parameter, we explicitly compute a
new dual theory which differs from the non-commutative self-dual model and, further, differs also from
other previous results and involves a very simple expression in terms of ordinary fields. In addition, a
remarkable feature of our results is that the dual theory is local, unlike what happens in the non-Abelian,
but commutative case. We also conclude that the generalization to non-commutative space of bosonization
in three dimensions is possible only when considering the first non-trivial corrections over ordinary space.

1 Introduction

The well-known duality between the Maxwell–Chern–Si-
mons (MCS) theory [1] and the self-dual (SD) model [2]
was established a long time ago in [3], both by comparing
the corresponding equations of motion, and by introducing
a master action out of which the MCS theory and the SD
model can be obtained.1 Such duality leads to two equiva-
lent descriptions of the dynamics of a parity violating, mas-
sive, spin one field. In particular, an important application
of this duality is bosonization in three dimensions [6,7] of
a theory of massive self-interacting fermions, namely, the
massive Thirring (MT) model. Such a bosonization was
carried out in [6] by establishing, to leading order in the
inverse fermionic mass, an identity between the partition
functions of the MT and SD models, and then, by mak-
ing use of the equivalence between the SD model and the
MCS theory. In this way, the MT model is bosonized, and

a e-mail: botta@cbpf.br, mbotta c@ictp.trieste.it
b e-mail: pablo@fma.if.usp.br
∗ Permanent address
1 See [4] for a review in the use of the master action approach

in diverse areas and [5] for the application of the master action
approach to the context of bosonic p-branes.

even when it has no manifest local gauge invariance, the
bosonized theory is indeed a manifestly gauge invariant
theory, namely, the MCS theory.

In view of the relevance of the above results, it would be
interesting to investigate the possibility of their extension to
non-commutative (NC) space. During the last few years,
the interest in NC field theories has intensified, due to
applications in string theory [8–10], thus giving rise to a
series of new developments and applications (see [11, 12]
for reviews). In NC space, the usual product is replaced
by the star product of the form

ĝ(x) � ĥ(x) = exp
[

i
2

θαβ∂ĝ
α∂ĥ

β

]
ĝ(x)ĥ(x)

= ĝ(x)ĥ(x) +
i
2

θαβ∂αĝ(x)∂βĥ(x) + O(θ2) , (1)

where ĝ(x) and ĥ(x) are arbitrary functions, and the non-
commutativity parameter θαβ is an antisymmetric constant
tensor. A relation between NC and ordinary spaces is given
by the Seiberg–Wittenmap (SWM) [10], which interpolates
between a NC gauge theory and its commutative counter-
part, in such a way that NC gauge orbits are mapped into
ordinary ones. The SWM on a NC Abelian gauge field Âµ
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is given by

Âµ = Aµ − 1
2

θαβAα(2∂βAµ − ∂µAβ) + O(θ2) . (2)

In particular, the NC-CS action of the form

INC−CS ∼
∫

d3x εαµνÂα �

(
F̂µν +

2i
3

Âµ � Âν

)
, (3)

was considered in [13], where itwas shown that it ismapped,
via (2), into the standard commutative CS action. In the
above equation, F̂µν is given by

F̂µν = ∂µÂν − ∂νÂµ − i
[
Âµ , Âν

]
�

, (4)

where [
Âµ , Âν

]
�

= Âµ � Âν − Âν � Âµ . (5)

Notice the presence in (3) of a cubic term, even when we
are considering the Abelian case. As shown in [13], such a
cubic term is cancelled by the SWM.

The extension to the NC case of the duality between
MCS theory and the SD model was analyzed in [14–16]
(see [17] for results in the non-Abelian case). In particular,
the proposal in [14] was to consider calculations at the
first non-trivial order in the NC parameter, and perform
an inverse SWM to the usual master action in commutative
space, as defined in [3]. This leads to a master action in
NC space out of which to obtain, by following a procedure
analogous to the one in [3], two theories which are in fact
equivalent, and which could be considered, in principle, as
the NC versions of the MCS theory and the SD model. In
fact, the proposal in [14] for the NC-MCS action is just
the result obtained by performing the inverse SWM on the
usual action of the MCS theory.

Later, [15] considered the generalization to theNCplane
of the bosonization of the MT model as performed in [6]. It
was shown that the NC-MT model bosonizes, in the large
fermion mass limit, into a model described, up to some con-
ventional multiplicative coefficient, by the following action
in NC space:

IB =
∫

d3x

[
−µf̂µ � f̂µ (6)

+
κ

2
εαµν f̂α �

(
∂µf̂ν − 2i

3
f̂µ � f̂ν

)]
,

where µ and κ are constant coefficients. Since the above
action differs from the version of the NC-SD model given
in [14], the conclusion in [15] was that, even when the
NC-MT model can be bosonized in powers of the inverse
fermion mass, the duality between NC-MT model and NC-
MCS theory is lost. It was stated that NC-MCS is not the
dual of the NC-MT model.

On the other hand, the proposal in [16] was to consider
the NC-MCS theory as defined, up to some multiplicative
coefficient, by the action (whose non-Abelian version was

also considered in [17])

INC−MCS =
∫

d3x

[
−κ2

2µ
F̂µν � F̂µν (7)

− κεαµνÂα �

(
F̂µν +

2i
3

Âµ � Âν

)]
.

Our particular choice of the multiplicative coefficients will
be clarified later. It can be verified that, in fact, the above
action differs from the one obtained in [14] by performing an
inverse SWM on the usual commutative action of the MCS
theory. Notice, however, that (7) is also a natural choice,
as it makes use of the usual expressions of the NC Maxwell
and CS theories. We emphasize that, even when the NC-CS
action (3) is mapped into its commutative version via the
SWM, the same does not happen to the Maxwell term.

The formulation in [16], which considers calculations at
the second order in the NC parameter, involves to write (7)
in terms of ordinary fields, and then to define a master
action out of which it can be obtained. Then, starting
from such master action, [16] computed another version of
the NC-SD model, which differs from the one considered
in [14, 15], and involves an expression which is written in
terms of commutative fields.

At this point we conclude that, in fact, there exists an
ambiguity in the proper definition of the NC generalizations
of the MCS theory and the SD model, and this fact was
indeed recognized in [15], which wondered what theory
should be referred to as the NC-SD model. One possible
choice would be the one obtained by replacing the ordinary
product by the star one, as in [14]. Such a version has the
advantage that it obeys the self-dual equation, and is the
one adopted in [15]. On the other hand, (6) is perhaps a
more natural choice, as the mass term remains as such,
and the CS term is generalized to its NC version (3). In
addition, as we have pointed out before, the action of the
NC-MCS theory considered in [14,15] differs from the one
introduced in [16], namely (7).

Summarizing, we are facing two difficulties in the gen-
eralization to the NC space of the duality between MCS
theory and the SD model, namely, the existence of ambigu-
ities when defining their corresponding NC versions, and
the fact that a complete bosonization, along the lines of [6],
has not been formulated yet (even when [15] managed to
solve a part of the problem).

The purpose of this paper is to try to shed some light
on the above detailed problems, by performing a careful
analysis at a perturbative order in the NC parameter.

A strong indication on the way to do this was given
in [17], dealing with non-Abelian CS theories in NC space,
where it was shown, using the traditional master action
approach at a perturbative level in the field but to all
orders in the NC parameter, that the NC Yang–Mills–
Chern–Simons action of the form

INC−YMCS =
∫

d3x Tr
[
−κ2

2µ
F̂µν � F̂µν (8)

− κεαµνÂα �

(
F̂µν +

2i
3

Âµ � Âν

)]
,
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where Âµ is a NC field in the adjoint representation of an
arbitrary non-Abelian gauge group, is dual to an action
which differs from the non-Abelian NC-SD model only by
terms of the fourth order in the field, namely

I = Inon−Abelian
NC−SD + O

(
B̂4

)

=
∫

d3x Tr
[
−µB̂µ � B̂µ

+
κ

2
εαµνB̂α �

(
∂µB̂ν − 2i

3
B̂µ � B̂ν

)]

+O
(
B̂4

)
. (9)

The master action proposed in [17] was the natural gen-
eralization of the one which is usually utilized in the com-
mutative case [3, 6, 18] (see also [19] for a master action
which has a gauge invariance in all fundamental fields).

The above considerations motivate us to wonder what
the results in the NC Abelian case would be like. We suspect
that, since non-commutativity resembles in some respects
non-Abelian structures (notice, for example, the presence
of a cubic term in the Abelian NC-CS action (3)), then
it will be the case that, in the NC Abelian situation, the
fourth order term in the above equation is still present.
However, such a result arises when considering calculations
involving all orders in the NC parameter. In principle, it
could be possible that more useful results would arise when
considering a perturbative approach. In that respect, we
point out that, until today, most results in NC space involve
corrections of the first order in θ over ordinary space, and
this encourages us to perform calculations at orders O(θ)
and O(θ2) and see what our results look like.

Going on along this line of thought, our proposal here is
to find, by performing calculations at a perturbative level,
the dual theory of (7), written in terms of ordinary fields. In
doing this, we will separate our calculations into two stages.
At the first part of calculations, performed in Sect. 2, we
will find that, at order O(θ), the dual theory of INC−MCS
(as defined through (7)) is precisely (6). Notice that this
allows, by using the result in [15] that (6) is obtained by
bosonizing the NC-MT model in the large fermion mass
limit, to remove the obstacles arising in the generalization
of the bosonization in three dimensions, along the lines
of [6], to the NC case. We emphasize that this result holds
provided that only the first non-trivial corrections over
ordinary space are considered.

Then, at the second part of our calculations, performed
in Sect. 3, we will find that, at order O(θ2), the “non-
Abelian-like” nature of NC theories finally prevails, and
the duality between (6) and (7) is lost.2 However, by com-
puting the explicit form of the dual theory, we will show
a remarkable result, namely, that it is local, unlike what

2 The conjecture that duality should be lost when considering
higher orders of the NC generalization of the theory is also
suggested by the recent result in [20], which considers a NC
chiral boson action and shows that, for such model, self-duality
is not maintained.

happens to the non-Abelian, but commutative case [21].
In addition, we will show that our dual theory differs from
the one computed in [16], and involves a much simpler ex-
pression written in terms of ordinary fields. We will also
discuss the form of higher order contributions.

2 First order

We begin our calculations by introducing the following
master action in NC space

IM =
∫

d3x

[
−µf̂µ � f̂µ (10)

+κεαµν

(
f̂α � F̂µν − Âα �

(
F̂µν +

2i
3

Âµ � Âν

))]
.

In order to show the duality between the actions (6) and (7),
we will verify that solving IM, first for f̂µ (in terms of Âµ)
and then for Âµ (in terms of f̂µ), we recover both actions (7)
and (6), respectively. Throughout this paper, we consider
boundary conditions such as surface terms in the action
vanish. We begin by focusing on the NC-MCS theory (7).
From (10), we find the following equation of motion for f̂µ:

f̂µ =
κ

2µ
εµαβF̂αβ , (11)

and introducing this back into (10), we get the NC-MCS
action (7).

Now we focus on the NC-SD model (6). We compute
the equation of motion for Âµ in (10). By performing cal-
culations analogous to the ones in [17], we arrive at

2F̂µν = ∂µf̂ν − ∂ν f̂µ − i
[
Âµ, f̂ν

]
∗

+ i
[
Âν , f̂µ

]
∗

. (12)

We first consider calculations at the first non-trivial order
in θ. In order to solve the above equation, we will write
it in terms of ordinary fields (Aµ, fµ). This is done by
performing a SWM of the form (2) to the gauge field Âµ.
In addition, and taking into account that, in a non-gauge
theory, non-commutativity affects only products of fields
in the action, without changing the fields structures, we
should also set the simple identity f̂µ = fµ [14]. However,
and just in order to be general, we will instead consider a
mapping of the form

f̂µ = fµ + θαβbµαβ(fν) + O(θ2) , (13)

where bµαβ(fν) is an arbitrary function of fν . In particular,
the natural choice f̂µ = fµ corresponds to the particular
case bµαβ = 0. We will show that, in fact, our final result
(the duality, at the first non-trivial order in θ, between
the actions (6) and (7)) holds for any choice of bµαβ . The
only assumption that we will make is that bµαβ can be
expanded as

bµαβ(fν) =
∑
n≥0

b
(n)
µαβ(fν) , (14)
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where b
(n)
µαβ is of order O(fn).

From (1), (2), (4) and (13), we write (12) as

2Fµν + 2θαβ (FµαFνβ − Aα∂βFµν)

= ∂µfν − ∂νfµ + θαβ (∂αAµ∂βfν + ∂αfµ∂βAν)

+ θαβ (∂µbναβ − ∂νbµαβ) + O(θ2) , (15)

where Fµν = ∂µAν − ∂νAµ. Now we must look for a so-
lution Aµ[fν ] to the above equation. In order to do this,
we follow [17, 18] and consider that the solution can be
expanded as

Aµ =
∑
n≥0

A(n)
µ [fν ] , (16)

where A
(n)
µ [fν ] is of order O(fn). Thus, we will solve (15)

order by order in f , and also in θ, by expanding each term
A

(n)
µ in orders of θ as follows:

A(n)
µ = (0)A(n)

µ + (1)A(n)
µ (θ) + O(θ2) . (17)

In this way, (p)A
(n)
µ is of order n in f and of order p in θ

(where p = 0, 1).
In solving (15), we will drop pure-gauge terms of the

form (p)F
(n)
µν = 0, due to the gauge invariance of (10) (notice

that the formulation in terms of ordinary fields inherits,
via the SWM, an ordinary gauge invariance from the NC
gauge invariance of (10)).

To the lowest order in f , we get from (15)

2F (0)
µν + 2θαβ

(
F (0)

µα F
(0)
νβ − A(0)

α ∂βF (0)
µν

)

= θαβ
(
∂µb

(0)
ναβ − ∂νb

(0)
µαβ

)
+ O(θ2) , (18)

and using (17) (i.e. solving order by order in θ) we find,
up to some pure-gauge term

A(0)
µ =

1
2

θαβb
(0)
µαβ + O(θ2) . (19)

Next, to order O(f) (15) reads (notice that (0)A
(0)
µ does

not contribute)

2F (1)
µν = ∂µfν − ∂νfµ + θαβ

(
∂µb

(1)
ναβ − ∂νb

(1)
µαβ

)
+ O(θ2) ,

(20)
which has the solution (up to some pure-gauge term)

A(1)
µ =

1
2

fµ +
1
2

θαβb
(1)
µαβ(fν) + O(θ2) . (21)

Now we consider the order O(f2). From (15) we get
(we emphasize that (0)A

(0)
µ does not contribute)

2F (2)
µν + 2θαβ

(
F (1)

µα F
(1)
νβ − A(1)

α ∂βF (1)
µν

)

= θαβ
(
∂αA(1)

µ ∂βfν + ∂αfµ∂βA(1)
ν

)

+ θαβ
(
∂µb

(2)
ναβ − ∂νb

(2)
µαβ

)
+ O(θ2) . (22)

Using (21), we find the following solution to the above
equation (up to some pure-gauge term):

A(2)
µ = θαβ

[
1
8

fα (2∂βfµ − ∂µfβ) (23)

+
1
2

b
(2)
µαβ(fν) + Hµαβ(fν)

]
+ O(θ2) ,

where

∂µHναβ =
1
8

∂αfµ∂βfν . (24)

Finally, it canbe shown that the solution to orderO(fn),
with n ≥ 3, is given by (up to some pure-gauge term)

A(n)
µ =

1
2

θαβb
(n)
µαβ(fν) + O(θ2) (n ≥ 3). (25)

Summarizing, from (14), (19), (21), 23) and (25) we get
the following solution to (15):

Aµ =
1
2

fµ + θαβ

[
1
8

fα (2∂βfµ − ∂µfβ) (26)

+
1
2

bµαβ(fν) + Hµαβ(fν)
]

+ O(θ2) ,

where Hµαβ(fν) satisfies (24). From (2) and (26) we find

Âµ =
1
2

fµ+
1
2

θαβbµαβ(fν)+θαβHµαβ(fν)+O(θ2) . (27)

Now, introducing (13) and (27) into (10), integrating by
parts and using (24), we arrive at our key result

IM =
∫

d3x

[
−µfµ

(
fµ + 2θρβbµρβ

)

+
κ

2
εαµν

(
fα + 2θρβbαρβ

)
∂µfν (28)

+
κ

6
εαµνθρβfα∂ρfµ∂βfν

]
+ O(θ2) ,

which, as can be verified using (1) and (13), corresponds
precisely to the expansion, to the first non-trivial order in θ,
of (6). In this way, we have shown, at order O(θ), the equiv-
alence between the theories described by the actions (6)
and (7), and used this result, together with the ones in [15],
to remove the obstacles arising in the generalization to the
NC space of the bosonization in three dimensions, along
the lines of [6]. All calculations have been performed using
the traditional master action approach, and considering
only the first non-trivial order in the NC parameter. As
emphasized before, this is not a very restrictive imposition,
as most results computed until today involve corrections
of order O(θ) over ordinary space.
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3 Second order

Now we analyze how our results extend to order O(θ2).
For the sake of simplicity, we consider, instead of (13), the
natural choice

f̂µ = fµ . (29)

We then note from (27) that Âµ will be of the form

Âµ =
1
2

fµ + θαβHµαβ(fν) + θαβθρσWµαβρσ(fν) + O(θ3) ,

(30)
where Hµαβ(fν) satisfies (24). In principle, Wµαβρσ(fν)
should be computed by expanding (12) to order O(θ2) and
then solving it. In order to do this, we should include the
SWM to order O(θ2) in our calculations. However, nothing
of this will be necessary, because an interesting result that
we will show is that, in fact, Wµαβρσ(fν) will not contribute
to our final result.

Now using (24), (29) and (30) we find

εαµν f̂α∂µÂν =
1
2

εαµνfα

×
(

∂µfν +
1
4

θρβ∂ρfµ∂βfν + 2θρβθσϕ∂µWνρβσϕ(f)
)

+O(θ3) , (31)

εαµνÂα∂µÂν =
1
4

εαµνfα

×
(

∂µfν +
1
2

θρβ∂ρfµ∂βfν + 4θρβθσϕ∂µWνρβσϕ(f)

− 1
16

θρβθσϕ∂ρfµ∂ϕfν∂βfσ

)
+ O(θ3) + . . . , (32)

εαµν f̂α

(
Âµ � Âν

)
=

i
8

εαµνfα

(
θρβ∂ρfµ∂βfν − 1

2
θρβθσϕ∂ρfµ∂ϕfν∂βfσ

)

+O(θ3) , (33)

εαµνÂα

(
Âµ � Âν

)
=

i
16

εαµνfα

(
θρβ∂ρfµ∂βfν − 3

4
θρβθσϕ∂ρfµ∂ϕfν∂βfσ

)

+O(θ3) + . . . , (34)

where the dots stand for total derivatives. Introducing (31)–
(34) into (10) and the terms containing Wνρβσϕ(f) remark-
ably cancel out, and we get

IM =
∫

d3x fα (35)

×
[
−µfα +

κ

2
εαµν

(
∂µfν +

1
3

θρβ∂ρfµ∂βfν

− 1
16

θρβθσϕ∂ρfµ∂βfσ∂ϕfν

)]
+ O(θ3) .

On the other hand, using (29), the expansion to order O(θ2)
of (6) is given by

IB =
∫

d3x fα

×
[
−µfα +

κ

2
εαµν

(
∂µfν +

1
3

θρβ∂ρfµ∂βfν

)]

+O(θ3) , (36)

so that

IM = IB − κ

32
εαµνθρβθσϕ

∫
d3x fα∂ρfµ∂βfσ∂ϕfν +O(θ3) .

(37)
In this way, we have shown that, as anticipated, the

“non-Abelian-like” nature of NC theories finally prevails
at order O(θ2), as the duality between (6) and (7) is lost,
due to the f -quartic term which has finally appeared at
this order. However, a remarkable thing to notice is that
the theory (35) is local, unlike what happens to the non-
Abelian, but commutative case [21]. Notice, also, that the
Abeliannature of the theory allowed to compute the explicit
expression of the f -quartic term, which is something that
could not be done in the non-Abelian case (see (9)).

We should also contrast our results with the other pre-
vious ones in [16]. Notice that, according to our calcula-
tions, the dual of (7) is given by (35), which differs from
(17) of [16], and involves a much simpler expression. The
remarkably simple form of (35) followed from the key ob-
servation that Wµαβρσ(fν) in (30) does not contribute to
the final result.

In this work, we have considered calculations at orders
O(θ) and O(θ2). In principle, this perturbative approach
could be extended to higher orders in θ. Notice that, at
order O(θ3), the term Wµαβρσ(fν) in (30) will finally con-
tribute, and to compute its explicit form would involve to
consider the correction at order O(θ2) over the SWM (2). In
principle, this poses no problem other that the increasing
algebraic difficulties. However, it can be verified that, in
solving (12) at order O(θ3), new difficulties arise, which are
similar to the ones already known from the non-Abelian,
but commutative case, suggesting that, at order O(θ3), lo-
cal solutions no longer exist. However, something that we
were able to verify is that the O(θ3) correction over (35)
is of order O(f5). This suggests that, in general, higher
O(θn) corrections over (35) should be of order O(f (n+2)).

To finish, we conclude by pointing out that three-
dimensional bosonization in NC space should be possible
only when NC effects are weak, and only the first non-
trivial corrections over ordinary space, that is to say O(θ)
corrections, are relevant. This is not a very restrictive im-
position, as most results till date in NC spaces involve only
such kind of corrections.
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